Demonstration of Deployment Accuracy of the Starshade Inner Disk Subsystem

Manan Arya, David Webb, John Steeves, P Doug Lisman, Phil Willems, S Case Bradford Jet Propulsion Laboratory, California Institute of Technology

Eric Kelso, Kenzo Neff, Neal Beidleman, J David Stienmier, Gregg Freebury Tendeg, LLC

Andrew Tomchek, Tayler Thomas, Craig Hazelton, Kassi Butler, Kamron Medina, Mike Pulford, Larry Adams, David Hepper, Dana Turse *Roccor, LLC*

9 January 2020 7th AIAA Spacecraft Structures Conference AIAA SciTech 2020 Forum

Outline

- 1. Introduction
 - Background
 - Objective
- 2. Experimental Apparatus
 - IDS Prototype
 - Gravity Compensation
 - Metrology
- 3. Experimental Procedures
 - Shimming
 - Deployment
- 4. Test Results
 - Data processing
 - Deployment Repeatability
 - Deployment Accuracy
- 5. Conclusions

Outline

- 1. Introduction
 - Background
 - Objective
- 2. Experimental Apparatus
 - IDS Prototype
 - Gravity Compensation
 - Metrology
- 3. Experimental Procedures
 - Shimming
 - Deployment
- 4. Test Results
 - Data processing
 - Deployment Repeatability
 - Deployment Accuracy
- 5. Conclusions

Introduction: Starshade

- Starlight suppression for exoplanet imaging using an external occulter
 - Independent spacecraft, formation flying with a space telescope
 - Desired starshade diameters ~ 10s of meters ⇒ deployable system

Starshade Deployment Concept

Starshade Inner Disk Unfolding Concept

Reference Mission Concepts for Starshade Technology

- WFIRST Rendezvous Probe concept Starshade Rendezvous Mission (SRM):
 - Telescope diameter: 2.4 m
 - Separation: 26,000 km
 - Starshade: 26 m diameter, 8 m-long petals,
 10 m-diameter inner disk
- Habitable Exoplanet Observatory (HabEx) concept starshade:
 - Telescope diameter: 4 m
 - Separation: 76,600 km
 - 52 m diameter, 16 m-long petals, 20 mdiameter inner disk
- This work is relevant to SRM at full-scale and to HabEx at half-scale

Background

- S5 (Starshade-to-TRL 5) activity within NASA's Exoplanet Exploration Program will bring starshade technology to Technology Readiness Level 5 (TRL5)
- Technology milestones across three areas:
 - 1. Optical testing and modeling of starlight suppression
 - 2. Formation flying between a space telescope and a starshade
 - 3. Stable and accurate deployable mechanical system
- Activities are underway to address these milestones
- We address Milestone 7C, related to the mechanical deployment accuracy of the starshade Inner Disk Subsystem (IDS)

Objective

- Address Milestone 7C of S5 Technology Development Plan through the repeated deployment and measurement of a full-scale IDS prototype
- Milestone 7C: Inner Disk Subsystem with optical shield assembly that includes deployment critical features demonstrates repeatable deployment accuracy consistent with a total pre-launch petal position accuracy within ± 300 µm
- Petal position accuracy errors applied at the petal attachment hinges

Error component	Allocation (μm)
Radial bias	35
Radial random	150
Tangential random	120

Outline

- 1. Introduction
 - Background
 - Objective
- 2. Experimental Apparatus
 - IDS Prototype
 - Gravity Compensation
 - Metrology
- 3. Experimental Procedures
 - Shimming
 - Deployment
- 4. Test Results
 - Data processing
 - Deployment Repeatability
 - Deployment Accuracy
- Conclusions

Experimental Apparatus

IDS Prototype

Deployed Stowed

12

IDS Prototype Comparison to SRM Concept

	IDS Prototype	SRM IDS
Deployed IDS diameter	10.6 m	9.8 m
Stowed IDS diameter	2.3 m	2.3 m
Stowed IDS height	1.2 m	1.4 m
Central cylinder diameter	1.3 m	1.6 m
Number of petals	28	24

Perimeter Truss

- Stowed barrel form → deployed ring
- 4-bar linkage of each truss bay enables stowage and deployment
- Driven by a single cable, routed along the diagonals of all bays
 - Cable gets reeled by a drive node
- Longerons and shorterons: CFRP with epoxy resin
- Nodes: CFRP plates bonded to aluminum center beam using epoxy

Spokes

- 4x 5.m-long spokes per node, 112 total
- Pulled into tension when deployed
- Provide a uniform tension field within the IDS for stiffness and precision
- Nominal spoke preload: 71 N (16 lbf)
- Comprised of unidirectional CFRP tape 6.35 mm wide, 0.10 mm thick
 - CFRP: IM7 carbon fiber in a PEKK matrix
 - Metal end-tabs bonded to CFRP tape using are bonded using PEI resin
 - Protected by flexible braided PEEK sheath
- Manufactured in custom precision jig; standard deviation of prestressed length: 54 µm

Hub

- Aluminum components bonded together:
 - 2x spoke rings
 - 1x central cylinder
 - 2x flanges
- Spoke interfaces on the hub were shimmed after complete assembly
 - Assuming a perfect truss, the residual shimming errors would result in spoke length errors of ±200µm

Optical Shield (OS)

- Primary light-block element of the IDS
- Planar panels hinges together with revolute joints
 - Hinge placement (fold pattern) designed using modified origami algorithm
 - Deployed conical surface wraps while accounting for material thickess

Optical Shield (OS)

- Planar panels made from aluminum "picture frame"
- Frame is filled with an opaque blanket made from 2x Kapton layers and a 16 mm-thick polyurethane foam layer
- 32 mm-tall foldable aluminum ribs along major fold lines for out-of-plane bending stiffness
- Out-of-plane bending stiffness is important for offloading, decoupling the OS from truss

Gravity Compensation

- Counterweighted at 140 discrete locations
 - 4 offload points at each major fold line
 - 1 offload point at each perimeter truss node
- Counterweight pulleys on wheeled carts, free to move along 28 overhead rails
 - ~5 m above the perimeter truss (when deployed)
- Structural hub held by a fixture
 - x, y, z translational degrees of freedom fixed
 - Rotation about the x, y axes fixed
 - Rotation about z-axis free; the hub needs to rotate relative to the perimeter truss during deployment as the OS is unwrapped

Metrology

- Leica AT402 laser tracker used to measure the 3D location of the centers of spherically mounted retroreflectors (SMRs) affixed to the IDS prototype
 - Maximum permissible error ±(15 μm + 6 μm/m of measurement range)
 - In practice, the laser-tracker-reported 3σ uncertainty was approximately half the maximum permissible error for the same range
- 67 SMRs visible to the laser tracker
 - 22 SMRs attached to the middle petal interfaces on the truss longerons
 - 12 SMRs attached to the end petal interfaces on the longerons
 - 26 SMRs on the tops of the node
 - 3 SMRs on the hub
 - 4 SMRs fixed to the floors and the walls as reference markers.

SMR locations

Outline

- 1. Introduction
 - Background
 - Objective
- 2. Experimental Apparatus
 - IDS Prototype
 - Gravity Compensation
 - Metrology
- 3. Experimental Procedures
 - Shimming
 - Deployment
- 4. Test Results
 - Data processing
 - Deployment Repeatability
 - Deployment Accuracy
- 5. Conclusions

Shimming

- 8 rounds of measurement and shim adjustment were performed
 - For each round of measurement, at least 3 partial deployments were conducted, establishing a mean deployed position for each petal interface SMR
 - Based on these measured deployed locations, shim corrections were computed and implemented
 - Each petal interface SMR was shimmed to reduce deviation between measured location and a nominal design location

Stowage and Deployment

- 22 deployments performed at the final shim state
 - 5x from a 96% stowed state
 - 3x from a 82% stowed state
 - 3x from a 49% stowed state
 - 11x from a 8% stowed state
- Stow percent is defined as the angle between the longerons when stowed, divided by 180°, which is the angle between the longerons when fully stowed
 - Stow % = 100% is fully stowed
 - Stow % = 0% is fully deployed

	Timestamp	Stow %
1	2019.07.17	8
2	2019.07.17	8
3	2019.07.17	8
4	2019.07.17	8
5	2019.07.18	8
6	2019.07.18	82
7	2019.07.22	8
8	2019.07.22	8
9	2019.07.22	8
10	2019.07.22	8
11	2019.07.23	8
12	2019.07.24	82
13	2019.07.25	82
14	2019.07.25	49
15	2019.07.26	49
16	2019.07.29	49
17	2019.08.08	8
18	2019.08.12	96
19	2019.08.15	96
20	2019.08.16	96
21	2019.08.20	96
22	2019.08.21	96

Outline

- 1. Introduction
 - Background
 - Objective
- 2. Experimental Apparatus
 - IDS Prototype
 - Gravity Compensation
 - Metrology
- 3. Experimental Procedures
 - Shimming
 - Deployment
- 4. Test Results
 - Data processing
 - Deployment Repeatability
 - Deployment Accuracy
- Conclusions

Data Processing

- At the end of each deployment, the location of the SMRs was measured, by an automated program
- Automated program was run 3 times at the end of each deployment, thus taking 3 independent passes
- The canonical deployed location of each SMR was taken to be the mean of the measurements from the 3 passes
- All SMR locations after a deployment were translated and rotated as a rigid body to best fit (in a least squares sense) the measured petal interface locations to the nominal petal interface locations

Definition of Deployment Errors

- Accuracy: deviation between the measured locations and the nominal location
 - Includes secular shape bias (shimming errors) that does not change between deployments
- Repeatability: deviation between the measured locations and the mean deployed location over all deployments
 - Measure of random variation from deployment to deployment of the system

Tolerance Intervals

- We compute the standard deviations of the radial and tangential components of the accuracy and repeatability errors
- Given the low sample size 22 deployments in total the standard deviations of the sample may differ greatly from the standard deviations of the underlying population
 - To retire this uncertainty, tolerance intervals are employed
- A tolerance interval is a $\pm k\sigma$ region centered around the mean that will contain a percentage γ of future members of a population with a confidence level defined by (1α) ; we use
 - $\gamma = 0.9973$
 - $(1 \alpha) = 0.90$
- For a sample size of 22 deployments, we get a tolerance interval of $\pm 3.8596\sigma$
 - Compare to a well-sampled normal distribution, for which 99.73% of the population falls within $\pm 3\sigma$

Accuracy Errors at Petal Interfaces

Accuracy Errors at Petal Interfaces

Accuracy Errors at Petal Interfaces

Repeatability Errors at Petal Interfaces

Validity of Partial Stows

Conclusions

- IDS prototype was deployed 22 times and the locations of 34 petal interfaces on the IDS were measured after each deployment
 - Tolerance intervals were calculated that would contain 99.73% of future deployment accuracy errors with 90% confidence
- - This meets the ± 300 μm requirement set out in Milestone 7C, with 44% margin
- In-plane deployment repeatability of the petal interfaces errors fell within a 86 μm-radius circle
 - Repeatability errors neglect shimming errors, which can be reduced in future efforts
 - Repeatability errors represent the ultimate deployment accuracy capability of the IDS
- It was demonstrated that the required IDS deployment accuracy is achievable with an integrated optical shield

Acknowledgments

- Many thanks to the interns and engineers at JPL, Roccor, and Tendeg who assisted with the construction of the test hardware and the conduction of the experiments.
- The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D004).